If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-40x+64=0
a = 3; b = -40; c = +64;
Δ = b2-4ac
Δ = -402-4·3·64
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{13}}{2*3}=\frac{40-8\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{13}}{2*3}=\frac{40+8\sqrt{13}}{6} $
| -2+1+2x+4=-4x+3x | | 4.73-u=-3.78 | | 6+5x-2=9+3x=6 | | 6+5x-2=9+3x= | | 5x-18=3x+15 | | 1/2a-15=-19 | | -4(2t+10=-80 | | -4-7(-3x+6)=195 | | 32+0.22x=20+1.44x | | 5x-19=21+x | | 6+5a-6a^2=0 | | 175=25x+25 | | 9x-20=40-3x | | 6x+10=2x+12 | | 1/3+m=1/4 | | 42-18+12x=16x | | 1/4-1/3=m | | x-13*4=28 | | x-52=28 | | 3d-5=26= | | 83=27-5x | | 3(4s+7)=69 | | y=8*4+3 | | 4f+(3f-7)=147 | | 7(u-8)=70 | | 3(q-8)=30 | | 3(e+3)=21 | | 5n-3n=n+5+4-13 | | 7(4w+1)/5=-11 | | 5(x+3)=48 | | 4.92-9.6=x | | x-7x-2x=1 |